Cytochrome P-450-mediated metabolism of the individual enantiomers of the antidepressant agent reboxetine in human liver microsomes.

نویسندگان

  • L C Wienkers
  • C Allievi
  • M J Hauer
  • M A Wynalda
چکیده

In vitro studies were conducted to identify the hepatic cytochrome P-450 (CYP) enzymes responsible for the oxidative metabolism of the individual enantiomers of reboxetine. In human liver microsomes, each reboxetine enantiomer was metabolized to one primary metabolite, O-desethylreboxetine, and three minor metabolites, two arising via oxidation of the ethoxy aromatic ring and a third yet unidentified metabolite. Over a concentration range of 2 to 200 microM, the rate O-desethylreboxetine formation for either enantiomer conformed to monophasic Michaelis-Menten kinetics. Evidence for a principal role of CYP3A in the formation of O-desethylreboxetine for (S, S)-reboxetine and (R,R)-reboxetine was based on the results from the following studies: 1) inhibition of CYP3A activity by ketoconazole markedly decreased the formation of O-desethylreboxetine, whereas inhibitors selective for other CYP enzymes did not inhibit reboxetine metabolism, 2) formation of O-desethylreboxetine correlated (r(2) = 0.99; p <.001) with CYP3A-selective testosterone 6-beta-hydroxylase activity across a population of human livers (n = 14). Consistent with inhibition and correlation data, O-desethylreboxetine formation was only detectable in incubations using microsomes prepared from a Baculovirus-insect cell line expressing CYP3A4. Furthermore, the apparent K(M) for the O-desethylation of reboxetine in cDNA CYP3A4 microsomes was similar to the affinity constants determined in human liver microsomes. In addition, (S,S)-reboxetine and (R,R)-reboxetine were found to be competitive inhibitors of CYP2D6 and CYP3A4 (K(i) = 2.5 and 11 microM, respectively). Based on the results of the study, it is concluded that the metabolism of both reboxetine enantiomers in humans is principally mediated via CYP3A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MICROSOME-MEDIATED BENZO[A]PYRENE-DNA BINDING AND INHIBITION BY CYTOSOLIC FRACTIONS FROM LIVER AND SKIN OF ADULT AND WEANLING RATS

Biotransformation of benzo[a]pyrene (BaP) in the presence of microsomal fractions derived from liver and epiderm of adult and weanling rats was examined. The aim of this study was to evaluate the effect of age on the capacity of two organs in transformation of BaP. Subcellular fractions were prepared from skin and liver by ultracentrifugation and were used as the source of BaP metabolizing enzy...

متن کامل

Identification of human cytochrome P-450 isoforms involved in metabolism of R(+)- and S(-)-gallopamil: utility of in vitro disappearance rate.

Isoforms of cytochrome P-450 (CYP) involved in the metabolism of gallopamil enantiomers were identified by measuring the disappearance rate of parent drug from an incubation mixture with human liver microsomes and recombinant human CYPs. Mean (+/- S.D.) intrinsic clearances (CL(int)) of R(+)- and S(-)-gallopamil in human liver microsomes were 0.320 +/- 0.165 and 0.205 +/- 0.107 ml/min/mg protei...

متن کامل

Metabolic activation and DNA adduct formation of Benzo(a) pyrene by adult and newborn rat skin and liver microsomes

Benzo(a) pyrene is a carcinigen polycyclic aromatic hydrocarbon which diffuses into the environment from combustion of organic meterials.based on various epidemiological evidences it is related to lung,skin and liver cancer.mutagenicity,and immunosuppressivety are among important biological effects of Benzo(a) pyrene.after absorbtion and distribution in the body,it undergoes epoxidation by cyto...

متن کامل

Identification of CYP3A4 as the enzyme involved in the mono-N-dealkylation of disopyramide enantiomers in humans.

To identify which cytochrome P-450 (CYP) isoform(s) are involved in the major pathway of disopyramide (DP) enantiomers metabolism in humans, the in vitro formation of mono-N-desalkyldisopyramide from each DP enantiomer was studied with human liver microsomes and nine recombinant human CYPs. Substrate inhibition showed that SKF 525A and troleandomycin potently suppressed the metabolism of both D...

متن کامل

Different enantioselective 9-hydroxylation of risperidone by the two human CYP2D6 and CYP3A4 enzymes.

The antipsychotic agent risperidone, is metabolized by different cytochrome P-450 (CYP) enzymes, including CYP2D6, to the active 9-hydroxyrisperidone, which is the major metabolite in plasma. Two enantiomers, (+)- and (-)-9-hydroxyrisperidone might be formed, and the aim of this study was to evaluate the importance of CYP2D6 and CYP3A4/CYP3A5 in the formation of these two enantiomers in human l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 27 11  شماره 

صفحات  -

تاریخ انتشار 1999